Answer:
Option C
Explanation:
From mass conservation
$\rho\frac{4}{3}\pi R^{3}=\rho K\frac{4}{3}\pi r^{3}$
$\Rightarrow$ R= $K^{\frac{1}{3}}r$
$\therefore$ $\triangle U= T\triangle A=T(K. 4\pi r^{2}-4\pi R^{2})$
=$T(K. 4\pi R^{2}K^{-\frac{2}{3}}-4\pi R^{2})$
$\triangle U=4\pi R^{2}T[K^{\frac{1}{3}}-1]$
Putting the values, we get
$10^{-3}=\frac{10^{-1}}{4\pi}\times 4\pi\times 10^{-4}[K^{-\frac{1}{3}}-1]$
$100=K^{\frac{1}{3}}-1$
$\Rightarrow$ $K^{\frac{1}{3}}=100=10^{2}$
Given that K= $10^{\alpha}$
$\therefore$ $10^{\frac{\alpha}{3}}=10^{2}$
$\Rightarrow$ $\frac{\alpha}{3}=2$
$\Rightarrow$ $\alpha=6$